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Abstract. We present a theoretical study of the dissociative charge transfer processes induced by collisions
between doubly-charged alkaline clusters and alkaline atoms at slow and intermediate impact energies.
Charge-exchange cross sections have been evaluated for the collisions of Li2+31 and Na2+

31 clusters with
neutral alkaline atoms (Cs and Na) at impact energies between 500 and 4000 eV. The branching ratios of the
evaporation processes have been calculated within the framework of the microcanonical statistical theory
of Weisskopf. The key ingredient of this model is the cluster vibrational density of states. An approach
based on quantum tight-binding Hamiltonian is introduced, allowing us to evaluate this quantity at a
microscopic level, including quantum vibrational effects at low temperatures. Comparison with previously
reported results obtained using a macroscopic description of the level density are presented and discussed.

PACS. 34.70.+e Charge transfer – 36.40.Qv Stability and fragmentation of clusters – 36.40.Wa Charged
clusters

1 Introduction

Alkaline clusters are intermediate structures between
atoms and solids, and therefore can be considered as
atomic droplets. A large number of experimental and the-
oretical works have been carried out with the aim of un-
derstanding reactions involving electron excitation and
fragmentation of those clusters [1–23]. In the particular
case of cluster reactions involving electronic degrees of
freedom, a collective response of the electrons can lead
to the excitation of the cluster. The energy deposited
in the cluster can be distributed among the vibrational
modes leading to fragmentation (see e.g. [20]). In previ-
ous works we have studied charge transfer (CT) in collision
of metal clusters and atoms and the subsequent fragmen-
tation processes [20–22]. These studies have shown that
in the experiments carried out with mass-selected clusters
beams [3,5,17,19], the single CT of the valence electron
(6s for collisions with Cs and 3s for collisions with Na) is
responsible for the production of small clusters through
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evaporation of atoms or dimers from the excited clus-
ter [20–22].

In this work we present a theoretical study of evapora-
tion of charged metal clusters induced by CT reactions in
collisions with neutral atoms. In particular, we have stud-
ied collisions of the charged clusters Li2+31 and Na2+

31 with
the neutral alkaline atoms Cs and Na. Our study includes
the evaluation of the CT cross sections and the subsequent
fragmentation of the excited clusters:

Li2+31 + Cs → Li+31 + Cs+ → Li+31−k + Lik + Cs+ (1)

Li2+31 + Na → Li+31 + Na+ → Li+31−k + Lik + Na+ (2)

Na2+
31 + Cs → Na+

31 + Cs+ → Na+
31−k + Nak + Cs+. (3)

We compare the effect of different targets and different
projectiles in a range of impact energies between 500
and 4000 eV. The theoretical framework we use to de-
scribe statistically the above reactions is based on the
Weisskopf model, which requires the microcanonical den-
sities of vibrational states (DOSs) as its key inputs. Un-
like our previous efforts, where available thermodynamical
data for the bulk metal provided estimates for the DOSs,
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here we perform direct atomistic simulations of the spe-
cific cluster sizes using Monte Carlo methods and a quan-
tum tight-binding Hamiltonian. This approach accounts
for the possible nonmonotonic finite-size effects, which are
not captured when simple scaling of the bulk data is used
instead.

The objectives of this paper are (i) to compare charge
transfer and fragmentation processes in collisions with dif-
ferent targets and different projectiles and (ii) to introduce
a new methodology in the description of the density
of states of the excited clusters to evaluate evaporation
probabilities. The paper is organized as follows. In Sec-
tion 2, we briefly present the theoretical methods em-
ployed. In Section 3 we present and discuss the results ob-
tained. Comparison with the experimental measurements
of Bréchignac et al. [21,22] is also given. The paper ends
with the conclusions in Section 4. Atomic units are used
throughout unless otherwise stated.

2 Theory

In the range of impact velocities considered in this work
(v ∼ 0.01–0.03 a.u. or 1–4 keV) the collision time (τcol ∼
10−14 s) is much shorter than the cluster vibrational
period (τv ∼ 10−12 s). Therefore, the only relevant de-
gree of freedom during the collision is the relative dis-
tance between the cluster and the atom. In addition,
the electron-phonon coupling, which is responsible for
the cluster fragmentation, has a characteristic lifetime of
τrel ∼ 10−13–10−12 s. Thus, the electronic excitation en-
ergy deposited during the collision will be relaxed into vi-
brational degrees of freedom well after the collision, lead-
ing to the fragmentation of the cluster. In summary, the
different time scales of the processes taking place in these
reactions allow us to evaluate the fragmentation sepa-
rately from the collision, i.e. as a post-collisional process,
the energy deposited in the collision being the quantity
that relates both processes.

In this section we present the theoretical methods em-
ployed for the evaluation of the collision dynamics, the
charge transfer cross sections, the energy deposit and the
fragmentation of the excited clusters.

2.1 Collision dynamics

For the description of the alkaline atom we suppose that
the valence electron is the only active electron and the
others together with the nuclei form a frozen core. We
describe the interaction of the electron with the frozen
core by means of a model potential technique in which
the electron moves in a spherical potential [24]. Moreover,
the main simplifying assumption in our simulations is the
complete neglect of ionic geometry through the use of the
spherical jellium model. This model consists in replacing
the actual potential of the underlying ionic frame by the
potential of a sphere of radius RC with a constant and uni-
form positive charge distribution [7,16]. This is a reason-
able approximation [25] for the description of large elec-
tronic alkaline clusters and, especially if the cluster is hot

and disordered (T ∼ 500 K): in such states the cluster fluc-
tuates between many disordered isomers, and is definitely
not frozen in its lowest-energy geometry. The liquid state
of the cluster is further confirmed by the caloric curves,
shown and discussed below in Figure 2 and previously cal-
culated in references [26,27] for sodium case. Thus, in this
range of temperatures and internal energies, the spher-
ical jellium approximation provides, on average, a more
realistic picture of the cluster than that corresponding to
the lowest-energy geometry. Only at very low tempera-
tures, specific size effects on the electronic structure are
expected to play some role (if any).

We have then followed the methodology presented in
reference [7] for the description of the Ne valence elec-
trons of the cluster (Ne = 29 for Li2+31 and Na2+

31 ). It
consists in applying the Kohn-Sham formulation of the
density-functional theory to describe the electronic den-
sity of the cluster in terms of single-particle orbitals.
From these orbitals we obtain the corresponding one-
electron potentials using the local-density approximation
with exchange, correlation and self-interaction correction
(LDAXC-SIC). The orbital-dependent potentials obtained
with this method exhibit the correct asymptotic Coulom-
bic behavior, which is crucial in this work because CT
and excitation occur mainly at large distances. We have
used in our simulations a global average potential from the
calculated orbital-dependent LDAXC-SIC potential. The
orbitals and the potentials are then used in the dynamical
simulations of the collision. In particular, the molecular
approach for ion-atom collisional problems at low ener-
gies has been used. In collisions where many electrons are
active, this approximation enables us to describe multi-
electronic processes such as transfer-excitation or multi-
excitation of the projectile. The Ne-body problem was
solved within the independent electron model (IEM) and
the inclusive probability method introduced by Lüdde and
Dreizler [28]. A full quantum-mechanical description in the
IEM is possible because each active electron moves in the
field produced by two potentials: the model potential for
the target and the LDAXC-SIC potential of the cluster.
Thus, the total Hamiltonian ̂H can be expressed as a sum
of Ne one-electron effective Hamiltonians:

̂H ∼=
Ne
∑

j=1

̂hj . (4)

For each j in the above expression we have:

̂hj ≡ ̂h = −1
2
∇2 + VA+(|r-R|) + VC(r), (5)

where, VA+ is the model potential of Cs+ or Na+ [24]
and VC the cluster common average LDAXC-SIC poten-
tial [20,22]. As the cluster mass is much larger than the
target mass, the electronic coordinates have been put on
the cluster center of mass, R being the position vector
of the target nucleus and r that of the valence electron.
The dynamical problem associated to the one-electron
Hamiltonian ̂h is solved in the semi-classical approach
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where the projectile is treated classically in the impact-
parameter formalism and the electron motion is described
quantum mechanically. Thus, for each orbital j, one has
to solve the time dependent Schrödinger equation:

̂hΨj(r,t) = i
d

dt
Ψj(r,t), j = 1, . . . , Ne, (6)

with the initial conditions:

lim
t→−∞ Ψj(r,t) = φj(r) exp[−iεjt], (7)

where φj(r) is the initial (t = −∞) spin-orbital of en-
ergy εj .

In the experimental studies and in the range of impact
energies covered by the present work, the collision veloci-
ties are always smaller than the velocity of one electron in
any jth orbital. This fact justifies the use of the molecular
approximation for the description of the ion-atom (cluster-
atom) collision. Equation (5) is solved by expanding the
wave function Ψj(r,t) on a basis of Born-Oppenheimer
(BO) molecular states {χk(r,R)}. These molecular states
have been obtained by diagonalizing ̂h in a two-center
atomic basis built from spherical Gaussian-type orbitals
(GTOs) with angular momentum � ≤ 6.

2.2 Charge transfer cross section

Charge transfer cross sections have been evaluated using
the inclusive probability method [28], which consists in
calculating the quantity Pf1···fq of finding q of the Ne

electrons in the sub-configuration (f1 · · · fq) while the re-
maining Ne−q electrons occupy any other states after the
collision. This probability is given by the (q × q) determi-
nant [28]:

Pf1···fq = det(γnn′); n, n′ = 1, . . . , q; q < Ne, (8)

where γnn′ is the one-particle density matrix. The inclu-
sive probability of finding q occupancies and L − q holes,
P

fq+1...fL

f1...fq
, can be written in terms of the probabilities (8)

related only to occupancies [28]. We have successfully used
this procedure in previous works [7,16,23]. In order to de-
termine the charge transfer cross section σCT we must
evaluate for each impact parameter b the following inclu-
sive probabilities:

P 6s,6s,6p,6p... and P 6s,6s,6p,6p...
j for Cs, (9)

and

P 3s,3s,3p,3p... and P 3s,3s,3p,3p...
j for Na, (10)

where n� and n� are the orbitals with the correspond-
ing α and β spin components, respectively. Equations (9)
and (10) represent the probabilities of finding no elec-
trons in the atomic valence orbitals (6s, 6p, . . . for Cs
and 3s, 3p, . . . for Na) and the probability that, simul-
taneously, an electron is found in the j initially unoc-
cupied orbital of the cluster (both for Li2+31 and Na2+

31 ,
j = 2p, 1g, 3s, 2d, 1h, 3p, 2f, 4s, 3d, . . .).

Finally, the CT cross section has been evaluated by in-
tegration of the corresponding probability over the impact
parameter:

σCT =
∫ ∞

RC

bPCT(b)db (11)

where PCT = P 6s,6s,6p,6p,... for Cs and PCT =
P 3s,3s,3p,3p,... for Na.

2.3 Energy deposit

As already pointed out, the quantity that relates the colli-
sion with the fragmentation is the energy deposited in the
cluster during the CT process. Labelling Li31 and Na31

as MN , with M =Li or Na and N = 31, the total inter-
nal excitation energy in the cluster after the collision is
given by:

E∗
M+

N

(b) = E∗
0 + δEM+

N
(b), (12)

where E∗
0 is the initial vibrational energy of the M2+

N clus-
ter before the collision and δEM+

N
(b) its electronic excita-

tion energy due to CT, i.e. the energy deposited in the
collision. In our model [22], δEM+

N
is given by:

δEM+
N

(b) =
∑

j

∆εjP
ns,ns,np,np...
j (b), (13)

where ∆εj = εj − ε1f . εj and ε1f are the electron energy
in an excited j orbital and in the last initially occupied
cluster orbital 1f , respectively. In equation (13), n = 6 for
Cs and n = 3 for Na.

The total excitation energies calculated with the previ-
ous formulae are then used to evaluate the fragmentation
rates as explained in the next section. Therefore, the in-
ternal energy after the collision is the relevant quantity
that will determine the fragmentation behavior.

2.4 Fragmentation of excited clusters

After the collision, the main dissociation channel of the ex-
cited clusters is the sequential evaporation of monomers
or dimers [3,20,22]. Following [22], the evaporation rates
for a monomer kN,1 and for a dimer kN,2 were evaluated in
the framework of the microscopic, microcanonical statis-
tical model of Weisskopf [29]. These rates depend on the
vibrational density of states ρv

N (E∗
N ), which is a function

of the internal excitation energy [E∗
N ≡ E∗

M+
N

]. ρv
N (E∗

N )

has been determined via the specific entropy s(ε) and in-
ternal energy ε(T ) per atom, respectively given by

ε(T ) =
∫ T

0

cv(T ′)dT ′, (14)

s(ε) =
∫ T

0

cv(T ′)
T ′ dT ′, (15)
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Li+29, D3h Li+30, C1 Li+31, Cs

Fig. 1. Most stable isomers of Li+29, Li+30 and Li+31.

where cv(T ) is the specific heat at constant volume and
temperature T . In the microcanonical ensemble, the en-
tropy SN(E∗

N ) = Ns(ε) is related to the level density by
the well-known formula:

kB ln[ρv
N (E∗

N )] = Ns(ε). (16)

The calculation of the specific heat was carried out fol-
lowing the methodology introduced in reference [30]. In
this method, the binding energy of the lithium clusters
is modelled using a version of the quantum tight-binding
(TB) Hamiltonian previously developed for sodium clus-
ters [30], and further adapted for silver clusters [31]. Us-
ing the notations of reference [30], the distance-dependent
hopping integrals tss(r) and tsz(r) are both taken as
t(r) = Arp exp(−ar). The diagonal interaction �(r) ac-
counts for the short-range repulsion as well as an effective
long-range dispersion attraction:

�(r) = B exp(−br) − fcut(r)
C

rν
, (17)

with a cut-off function fcut taken as an Aziz form [32]
and with a cut-off radius d. All parameters were numer-
ically obtained by fitting the potential curves of the two
lowest electronic states of Li2 and the dissociation en-
ergy of Li4. They are given by Ass = −1.95 × 10−4 and
Asz = 9.1×10−6 Hartree; pss = 8 and psz = 10; ass = 1.80
and asz = 1.65 bohr−1 for the hopping integrals, and by
B = 2.406 Hartree, b = 1.494 bohr−1, C = 6.587 a.u.,
ν = 5.90, and d = 4.826 bohr for the diagonal term. We
first performed a global survey of the potential energy
surfaces (PESs) of the three clusters Li+N at N = 29,
30, 31, by locally optimizing a set of candidate struc-
tures obtained previously for metal clusters, using a simi-
lar strategy as the one in reference [33] for cationic sodium
clusters. The classical caloric curves were computed using
canonical Monte Carlo (MC) simulations improved with
the parallel tempering strategy [34]. 57 replicas were cho-
sen with a geometric allocation of temperatures in the
range 5 K ≤ T ≤ 1500 K. The simulations consisted of
106 MC cycles, following 2 × 105 steps left out for equili-
bration. The clusters were confined in a sphere of radius
12 bohr to prevent evaporation. Configuration exchanges
between adjacent trajectories were attempted with 10%
probability. Because parallel tempering also stands as a
structural optimization method, we could further refine
the putative global minima found previously. The most
stable isomers obtained using this combination of methods
are depicted in Figure 1. They are all based on icosahe-
dra, with an anti-Mackay (or polyicosahedral) overlayer,
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Fig. 2. (Color online) Heat capacities of Li+29, Li+30 and Li+31
obtained from classical parallel tempering Monte Carlo sim-
ulations corrected for vibrational quantum effects using the
Pitzer-Gwinn approximation.

similar to the geometries found for rare-gas clusters. Due
to the light weight of the lithium element, the dynamics
and thermodynamics of lithium clusters can be sensitive
to vibrational quantum delocalization. We have used the
Pitzer-Gwinn (PG) approximation [35] to correct for the
low-temperature variations in the caloric curve. Briefly,
the PG approach consists in approximating the anhar-
monic quantum partition function Zq at temperature T
by the product of the anharmonic classical partition func-
tion and the ratio of the quantum to classical partition
functions of the harmonic system:

Zq(T ) ≈ Zc(T )
ZH

q (T )
ZH

c (T )
. (18)

The harmonic partition functions are taken for the global
minima, which are characterized by a set of vibrational
frequencies {ωi}:

ZH
q (T )

ZH
c (T )

=
∏ sinh �ωi/kBT

�ωi/kBT
, (19)

where kB and � are the Boltzmann constant and the
Planck constant, respectively. While these quantum cor-
rections are most sensitive at low temperatures, it should
be noticed that they could affect the global minimum it-
self. With the inclusion of zero-point energy contributions,
the ordering between isomers may change and a new quan-
tum global minimum may appear [36]. However, in the
present case, the anti-Mackay character of the global min-
ima of the clusters makes this situation unlikely, as the
anti-Mackay structures are usually further stabilized by
zero-point effects [36].

The quantum-corrected heat capacities of the three
clusters (Li+31, Li+30 and Li+29) are represented in Figure 2.
Each curve exhibits three distinct regions. At low temper-
ature, the heat capacity increases from zero to a plateau
close to the Dulong-Petit limit (3N − 6)kB, then reaches
a peak characteristic of the solidlike-liquidlike transition,
and finally decreases down to a second plateau. Quantum
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Fig. 3. (Color online) Specific entropy as a function of the
internal energy per atom for Li+31, Li+30, Li+29 (full lines) and
bulk lithium (dashed line).

corrections are mostly important in the low temperature
range 0 ≤ T ≤ 200 K, where the heat capacity lies signifi-
cantly below (3N − 6)kB. The melting temperature Tmelt

is indicated by the top of the peak, and the latent heat of
fusion is the area below the peak. Tmelt varies decreasingly
with increasing size: 500 K for the smallest cluster, 485 K
for Li+30, and only 460 K for Li+31. These values are com-
parable to the bulk melting temperature (about 454 K).
For clusters they are probably overestimated, due to our
TB model being fitted on molecular properties without
including proper bulk data [26]. However, as will be seen
below, this barely affects the evaporation rates, which are
essentially sensitive to the sharper variations of the densi-
ties of states. That both the melting temperature and the
latent heat vary decreasingly is a manifestation of non-
monotonic size effects, as experimentally demonstrated by
the Haberland group [37].

The variation of the entropy as a function of the inter-
nal energy E∗

N as given by equations (14–16) is shown in
Figure 3. In the same figure the entropy of bulk lithium
is also shown [22]. We observe that the entropy given by
the bulk approximation compares fairly well with our mi-
croscopic calculations in the region of energies lower than
0.15 eV/N , which is approximately (as will be shown be-
low) the total excitation energy of the cluster. Moreover,
the difference between the calculated entropies for the Li+N
clusters (N = 29, 30 and 31) in this region is almost negli-
gible. For the evaporation simulations we have used both
the bulk and the calculated finite-size entropies in order to
obtain the densities of states and from them, the monomer
and dimer fragmentation rates (see [20] for the complete
equations):

kN,1 ∝
∫

ρv
N−1

ρv
N

e de ∝
∫

exp(SN−1/kB)
exp(SN/kB)

e de (20)

kN,2 ∝
∫

ρv
N−2

ρv
N

e de ∝
∫

exp(SN−2/kB)
exp(SN/kB)

e de. (21)
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Fig. 4. (Color online) Correlation diagrams (energy ver-
sus cluster-atom distance R) for the σ molecular orbitals of
(Li31−Cs)2+ (upper panel), (Li31−Na)2+ (middle panel) and
(Na31−Cs)2+ (lower panel). n�, 6sCs and 3sNa denote, respec-
tively, the cluster, Cs and Na orbitals to which the MOs cor-
relate at R = +∞.

Although the difference in entropy per atom is small, the
fragmentation ratio scales as the exponential of the differ-
ence between the entropy of the parent and the daughter
clusters (sN , sN−1 or sN−2), as can be seen in the above
equations. Thus, small differences in entropy per atom
could lead to great differences in the evaporation rates.
The rates (kN,1 and kN,2) are then introduced in a set of
coupled master equations (which are integrated up to the
time of flight of the experiment we want to compare with).
We thus obtain the branching ratios for the production of
Li+N or Na+

N clusters with sizes N = 31, 30, 29, . . . The re-
sults obtained with both approximations are presented in
the next section.

3 Results and discussions

Figure 4 shows the adiabatic BO energy correlation dia-
grams for the three systems studied and for the σ(m = 0)
molecular orbitals. These orbitals have been obtained by
diagonalizing ̂h in a two-centre atomic basis built from
spherical Gaussian-type orbitals (GTO) with angular mo-
mentum up to l = 6. The orbital energies in the figure
are labelled from their analogues at R = +∞ (‘separate
atom’) and therefore, the initially occupied orbitals are:
1s, 1p, 1d, 2s and 1f for the clusters, 6s for the Cs and 3s
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Fig. 5. (Color online) Non adiabatic radial couplings be-
tween the σ molecular orbitals of (Li31−Cs)2+ (upper panel),
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versus cluster-atom distance R. n�, 6sCs and 3sNa denote, re-
spectively, the cluster, Cs and Na orbitals to which the MOs
correlate at R = +∞.

for the Na. Figure 5 shows the relevant non adiabatic ra-
dial couplings between the one-electron states of Figure 4.
A first inspection of the correlation diagrams and the ra-
dial couplings shows that the effective avoided crossings
are located at large distances. More precisely, the upper
panels of Figures 4 and 5 show that the entrance chan-
nel [Cs(6s)] is mainly coupled with the empty cluster or-
bitals 2f , 3p, 1h and 2d with the effective avoided crossings
placed at R ∼ 20–35 a.u. The middle panels of Figures 4
and 5 show that the entrance channel [Na(3s)] is coupled
with the 2d, 3s, 1g and 2p cluster orbitals. The lower pan-
els of Figures 4 and 5 show that the input channel [Cs(6s)]
is coupled with the 1h, 2d and 3s cluster orbitals and the
important avoided crossings take place at R ∼ 25–35 a.u.
Thus, in all cases, the CT process is expected to take place
at large distances (R ∼ 20–35 a.u).

Figure 6 shows the total charge transfer cross section
σCT as a function of the impact energy for the three sys-
tems under study. The shape of the cross sections varies
with the collisional system: while it slightly increases with
the impact energy in the Li2+31 +Na collision, it decreases in
the Li2+31 +Cs one and remains practically constant in the
Na2+

31 +Cs case. We can also see that the CT cross section
for the Li2+31 +Cs collision is larger than the one for the
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Fig. 6. (Color online) Total cross sections (σCT) versus im-
pact energy for (Li31–Cs)2+, (Li31–Na)2+ and (Na31–Cs)2+.
The experimental measurement of Bréchignac et al. [22] for
the Li2+31 +Na is given by the symbol with error bar.

Li2+31 +Na collision. In the Na2+
31 +Cs collision, σCT is the

smallest of the three systems in the range of impact ener-
gies studied. These results can be understood by analyzing
the correlation diagrams depicted in Figures 4 and 5. For
the collision of Li2+31 with Cs, the effective avoided cross-
ings are located at larger distances than in the case of Li2+31
with Na. Therefore, CT occurs at larger distances and the
corresponding cross section is necessarily larger. This is so
in spite of the fact that the avoided crossing at R ∼ 34 a.u.
is passed through diabatically (because the corresponding
radial coupling has a narrow Lorentzian shape in that re-
gion and contains an area of π/2 [38,39], see Fig. 5) and
the first effective avoided crossing is that appearing at
R ∼ 31 a.u. For Na2+

31 +Cs, the avoided crossing appear-
ing at around R ∼ 35 a.u. is passed through diabatically.
As a consequence, the first effective avoided crossings ap-
pear at smaller distances (R ∼ 25 a.u.), thus leading to
smaller cross sections. In Figure 6 we have also represented
the experimental measurements of Bréchignac et al. [22]
for the Li2+31 +Cs system at an impact energy of 3 keV
(∼14 eV/amu). The comparison between theory and ex-
periment is very satisfactory.

The left column of Figure 7 shows the calculated en-
ergy deposited in the three collisions [see Eq. (13)] as a
function of the impact parameter δEM+

N
(b) (solid line) and

its average value
〈

δE∗
M+

N

〉

(horizontal dashed line) for a
collision velocity of vcol ∼ 0.023–0.025 a.u. The oscilla-
tions observed in the energy deposit are due to the os-
cillatory behavior of the transition probabilities (see e.g.
Ref. [22] for the Li2+31 +Cs case). We note that the aver-
age value depends on the collisional system (varying be-
tween ∼0.5 and 2.0 eV). This effect can be also understood
from the correlation diagrams (Fig. 4). For example, it can
be seen that the largest value of R at which the energy
is efficiently deposited coincides with the position of the
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Fig. 7. (Color online) (Left panels) Energy deposit as a func-
tion of the impact parameter for (Li31–Cs)2+ , (Li31–Na)2+ and
(Na31–Cs)2+. The horizontal dashed line represents the aver-

age value
〈

δE
M+

N

〉

. (Right panels) Partial cross sections of

M+
N cluster production with N = 31, 30, 29 and all N < 29,

M = Li or Na. The symbols with error bars are experimental
data given in [22].

farthest efficient avoided crossing (see also the discussion
of the previous paragraph).

We have previously shown that for a correct interpreta-
tion of the experiment of Bréchignac et al. two parameters
play a crucial role [21,22]: (i) the time-of-flight (TOF) at
which the fragments are detected and (ii) the initial vibra-
tional energy (E∗

0 ) of the clusters before the collision. In
order to have a direct comparison with these experiments
we have taken a TOF of 3 µs and an initial cluster energy
of E∗

0 = 4.1 eV in the three systems studied.
In the right side of Figure 7 (upper and middle pan-

els) the partial cross sections for the production of Li+31,
Li+30, Li+29 and

∑

Li+N (with N < 29) are shown. For
the Li2+31 +Cs collision, the partial cross sections evaluated
with both methods (bulk entropy and calculated finite
size entropy) are in good agreement with the experimental
data [22] being the finite-size ones the nearest to the ex-
perimental ones. For the Li2+31 +Na collision, the cross sec-
tions obtained by using the bulk and the finite-size entropy
are practically the same. For the first collisional system,
the Li+30 fragment is greatly dominant in comparison with
Li+31, Li+29 and smaller fragments. On the other hand, in the
Li2+31 +Na collision the partial cross sections are all equiv-
alent in magnitude (∼50×10−16 cm2). Indeed,

〈

δEClu+
N

〉

for the Li2+31 +Na collision is almost twice as large as for
the Li2+31 +Cs case, which leads to a larger production of
smaller fragments. On the other hand, for the Na2+

31 +Cs
collision,

〈

δEM+
N

〉

is the smallest of the three collisional

systems and, therefore, the lowest evaporation is observed,
the fragment Na+

31 being the dominant species. Only the
bulk entropy of Na was used in this case [20].

4 Conclusion

We have presented a theoretical study of charge trans-
fer and evaporation in collisions of slow metallic clusters
(Li2+31 and Na2+

31 ) with alkali atoms (Cs and Na). The cal-
culated charge transfer is in reasonable agreement with
the available experimental cross section. We have shown
that the entropy determined either by a bulk model or by
a finite size model are very similar in the range of energies
we are interested in. Therefore no noticeable variations in
the fragmentation rates are obtained, which leads to very
similar evaporation results. In any case, the fragmenta-
tion results obtained with the finite-size entropy are in
slightly better agreement with the experimental data. In
addition to the crucial role played by the TOF and the
initial energy of the cluster, we have shown that evapora-
tion strongly depends on how the cluster excited states are
populated during the collision. This is clearly illustrated
by comparing the collision energy deposit and the result-
ing fragmentation branching ratios for the three systems.
As expected, we observe a larger distribution of fragments
when the energy deposited during the collision is high.
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